# The specific gravity of gasoline is approximately 0.70. (a) Determine the mass (kg) of 50.0 liters of gasoline. (b) The mass flow rate of gasoline exiting a refinery tank is 1150 kg/min. Estimate the volumetric flow rate in liters/s. (d) Gasoline and kerosene (specific gravity = 0.82) are blended to obtain a mixture with a specific gravity of 0.78. Calculate the volumetric ratio (volume of gasoline/volume of kerosene) of the two compounds in the mixture, assuming Vblend = V gasoline + Vkerosene

Question-AnswerCategory: Material And Energy BalanceThe specific gravity of gasoline is approximately 0.70. (a) Determine the mass (kg) of 50.0 liters of gasoline. (b) The mass flow rate of gasoline exiting a refinery tank is 1150 kg/min. Estimate the volumetric flow rate in liters/s. (d) Gasoline and kerosene (specific gravity = 0.82) are blended to obtain a mixture with a specific gravity of 0.78. Calculate the volumetric ratio (volume of gasoline/volume of kerosene) of the two compounds in the mixture, assuming Vblend = V gasoline + Vkerosene

The specific gravity of gasoline is approximately 0.70. (a) Determine the mass (kg) of 50.0 liters of gasoline. (b) The mass flow rate of gasoline exiting a refinery tank is 1150 kg/min. Estimate the volumetric flow rate in liters/s. (d) Gasoline and kerosene (specific gravity = 0.82) are blended to obtain a mixture with a specific gravity of 0.78. Calculate the volumetric ratio (volume of gasoline/volume of kerosene) of the two compounds in the mixture, assuming Vblend = V gasoline + Vkerosene  