admin@mazurekgravity.in

Determine the force in each member of the Pratt roof truss shown. State whether each member is in tension or compression.

Question-AnswerCategory: Engineering MechanicsDetermine the force in each member of the Pratt roof truss shown. State whether each member is in tension or compression.
S cornwell asked 1 year ago

600 lb 600 lb 600 lb 300 lb 6 ft 300 lb 6 ft 8 ft
Determine using the method of joints the force in each member of the Howe roof truss shown. State whether each member is in tension or compression.

1 Answers
Sazid Ahmad answered 1 year ago

Step: 1

Draw the free body diagram of the Howe roof truss.
Picture 6

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 2

Since the truss is symmetrical about the member , the forces in the following members are equal in magnitude.





Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 3

Calculate the angle  by using the following relation:

Consider  to be the reaction force at point  due to the roller support, and  to be the reactions force in the  and  directions respectively at point  due to the pin support.
Write the force equilibrium equation in the  direction.

Consider the moment about point .

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 4

Write the force equilibrium equation in the  direction.

Substitute  for .

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 5

Draw the free body diagram at joint A.
Picture 4

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 6

Consider the force equilibrium equation equilibrium in the  direction.

Substitute  for .

Therefore, the force acting in each member AB and FH are .
 

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 7

Write the force equilibrium equation in the  direction.
 

Substitute  for .

Therefore, the force acting in each member AC and  is .

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 8

Draw the free body diagram of the joint C.
719-6-11P-d

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 9

Write the force equilibrium equation in the  direction.

Substitute  for .

Therefore, the force acting in each member CE and is .

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 10

Write the force equilibrium equation in the  direction.

Therefore, force acting in each member BC and  is .

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 11

Draw the free body diagram of the joint B.
719-6-11P-c

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 12

Write the force equilibrium equation in the  direction.

Substitute  for .
 …… (1)

 

Step: 13

Write the force equilibrium equation in the  direction.


Substitute  for .

Substitute  for .

Therefore, force acting in each member BE and  is .
Substitute  for  in equation (1).

Therefore, the force acting in each member BD and  is .

 

Step: 14

 
Draw the free body diagram of the joint E.
Picture 1

Subscribe @Mazurek Gravity on youtube for Free  Answers! Post Question on Website to get answers.

Step: 15

Write the force equilibrium equation in the  direction.

Substitute  for  and  for .

Therefore, the force acting in the member ED is .

Your Answer

8 + 20 =